Sabtu, 13 Maret 2010

fluida

Fluida

lakeatitlan

Yang kita maksud dengan fluida disini adalah suatu bentuk materi yang mudah mengalir misalnya zat cair dan gas. Sifat kemudahan mengalir dan kemampuan untuk menyesuaikan dengan tempatnya berada merupakan aspek yang membedakan fluida dengan zat benda tegar. Meskipun demikian hukum-hukum yang berlaku pada dua sistem ini tidak berbeda. Pada bagian ini kita akan meninjau fluida dalam keadaan tidak mengalir, contohnya air di dalam suatu wadah atau air di danau/waduk.

Aspek pertama yang kita dapati ketika kita berada dalam suatu fluida (zat cair) yaitu tekanan. Kita merasakan ada tekanan pada tubuh kita yang berada di dalam zat cair.


Fluida adalah zat yang dapat mengalami perubahan bentuk secara kontinu bila terkena tegangan geser walaupun relatif kecil. Gaya geser adalah komponen gaya yang menyinggung permukaan dan jika dibagi dengan luas permukaan tersebut menjadi tegangan geser rata-rata pada permukaan itu.

Fluida adalah gugusan yang tersusun atas molekul-molekul dengan jarak pisah yang besar untuk gas dan kecil untuk zat cair. Molekul-molekul itu tidak terikat pada suatu kisi, melainkan saling bergerak bebas terhadap satu sama lain.

Fluida adalah benda yang dapat mengalami perubahan bentuk secara terus menerus karena gaya gesek yang bekerja terhadapnya.

Fluida merupakan zat yang dapat mengalir yang mempunyai partikel yang mudah bergerak dan berubah bentuk tanpa pemisahan massa. Ketahanan fluida terhadap perubahan bentuk sangat kecil sehingga fluida dapat dengan mudah mengikuti bentuk ruang.

Tekanan

Pengertian tekanan akan mudah kita pahami setelah kita menjawab pertanyaan-pertanyaan di bawah ini. Mengapa pisau yang tajam lebih mudah memotong dari pada pisau yang tumpul? Mengapa paku yang runcing lebih mudah menancap kedalam benda dibandingkan paku yang kurang runcing? Pertanyaan diatas sangat berhubungan dengan konsep tekanan.

Konsep tekanan identik dengan gaya, gaya selalu menyertai pengertian tekanan. Tekanan yang besar dihasilkan dari gaya yang besar pula, sebaliknya tekanan yang kecil dihasilkan dari gaya yang kecil. Dari pernyataan di atas dapat dikatakan bahwa tekanan sebanding dengan gaya. Mari kita lihat orang memukul paku sebagai contoh. Orang menancapkan paku dengan gaya yang besar menghasilkan paku yang menancap lebih dalam dibandingkan dengan gaya yang kecil.

paluPengertian tekanan tidak cukup sampai disini. Terdapat perbedaan hasil tancapan paku bila paku runcing dan paku tumpul. Paku runcing menancap lebih dalam dari pada paku yang tumpul walaupun dipukul dengan gaya yang sama besar. Dari sini terlihat bahwa luas permukaan yang terkena gaya berpengaruh terhadap tekanan. Luas permukaan yang sempit/kecil menghasilkan tekanan yang lebih besar daripada luas permukaan yang lebar. Artinya tekanan berbanding terbalik dengan luas permukaan.

Penjelasan di atas memberikan bukti yang sangat nyata pada pengertian tekanan. Jadi, tekanan dinyatakan sebagai gaya per satuan luas.

Pengertian tekanan ini digunakan secara luas dan lebih khusus lagi untuk Fluida. Satuan untuk tekanan dapat diperoleh dari rumus di atas yaitu 1 Newton/m2 atau disebut dengan pascal. Jadi 1 N/m2=1 Pa (pascal).

Bila suatu cairan diberi tekanan dari luar, tekanan ini akan menekan ke seluruh bagian cairan dengan sama prinsip ini dikenal sebagai hukum Pascal.

Massa Jenis

Fluida memiliki bentuk dan ukuran yang berubah-ubah tergantung dengan wadah tempat fluida berada. Namun ada satu besaran dari fluida yang dapat mencirikan suatu jenis fluida dan membedakannya dengan fluida yang lain. Misalnya apa perbedaan cairan air dan cairan minyak tanah selain dari baunya. Sifat yang membedakan fluida satu dengan yang lainnya dinamakan dengan massa jenis. Massa jenis tidak hanya berlaku pada fluida saja, tapi berlaku juga pada semua benda tak terkecuali benda tegar. Namun, pengertian massa jenis akan sangat berguna untuk membedakan fluida satu dengan yang lainnya karena bentuk fluida yang tidak tentu.

Massa jenis berhubungan dengan kerapatan benda tersebut. Kita ambil contoh; suatu ruangan yang diisi oleh orang. Sepuluh orang menempati ruang kecil dikatakan lebih rapat dibandingkan dengan sepuluh orang yang menempati ruangan yang besar. Contoh ini membuktikan bahwa kerapatan berbanding terbalik dengan volume (isi) ruang. Kerapatan yang besar dihasilkan dari ruang yang kecil (sempit) dan kerapatan kecil didapat dari ruang yang besar. Kemudian kerapatan juga sebanding dengan jumlah materi yang ada di dalam ruang atau massa benda.

Dari penjelasan di atas dapat disimpulkan bahwa kerapatan sebanding dengan massa.

Kerapatan sebanding dengan massa

massa jenis dilambangkan dengan (rho) dan memiliki satuan kg/m3 atau gr/cm3 dimana 1 gr/cm3=1.000 kg/m3

Tekanan dalam Fluida

berenangMisalkan kita sedang berendam di dalam air, apa yang kita rasakan? Seolah-olah air menekan seluruh tubuh kita yang bersentuhan dengan air. Tekanan ini semakin besar apabila kita masuk lebih dalam ke dalam air. Fenomena apa yang ada dibalik peristiwa ini?

Pernyataan ini mengandung pengertian bahwa fluida memberikan tekanan terhadap benda yang berada di dalamnya. Pengertian ini diperluas menjadi tekanan pada fluida tergantung pada ketebalannya atau lebih tepatnya kedalamannya.

Udara/atmosfer terdiri dari gas-gas yang juga merupakan bentuk dari fluida. Maka udara juga akan memiliki tekanan seperti definisi di atas. Tekanan udara kita anggap sama untuk ketinggian tertentu di atas bumi namun untuk ketinggian yang sangat tinggi di atas permukaan bumi besarnya menjadi berbeda. Hal ini dapat dilakukan karena udara kita anggap kerapatannya kecil sehingga untuk titik-titik yang tidak terlalu jauh perbedaan ketinggiannya bisa dianggap sama.

Suatu zat yang mempunyai kemampuan mengalir dinamakan fluida. Cairan adalah salah satu jenis fluida yang mempunyai kerapatan mendekati zat padat. Letak partikelnya lebih merenggang karena gaya interaksi antar partikelnya lemah. Gas juga merupakan fluida yang interaksi antar partikelnya sangat lemah sehingga diabaikan. Dengan demikian kerapatannya akan lebih kecil.

Karena itu, fluida dapat ditinjau sebagai sistem partikel dan kita dapat menelaah sifatnya dengan menggunakan konsep mekanika partikel. Apabila fluida mengalami gaya geser maka akan siap untuk mengalir. Jika kita mengamati fluida statik, misalnya air di tempayan. Sistem ini tidak mengalami gaya geser tetapi mempunyai tekanan pada dinding tempayan.

Berdasarkan uraian di atas, maka pada modul ini akan dibahas dulu mengenai fluida statik. Pada kegiatan berikutnya akan dibahas secara khusus fluida dinamik. Pembahasan sering menggunakan konsep umum maupun prinsip mekanika partikel. Dengan mempelajari modul ini berarti Anda akan dapat mengkaji sifat fluida statik dan fluida dinamik dengan menggunakan mekanika partikel. Setelah Anda mempelajari modul ini, Anda dapat:

  1. Menjelaskan makna hukum utama hidrostatik.
  2. Menggunakan hukum utama hidrostatik untuk menjelaskan sifat-sifat khusus fluida statik.
  3. Membedakan macam-macam aliran fluida.
  4. Menghitung debit aliran fluida.
  5. Menjelaskan makna hukum Bernoulli.
  6. Menggunakan hukum Bernoulli untuk menjelaskan sifat-sifat aliran fluida.
  7. Menjelaskan masalah fluida pada kehidupan sehari-hari dengan menggunakan konsep fisika.
I. Fluida Statis

Fluida statis artinya adalah
fluida yang tidak mengalir. Jika dalam keadaan tidak mengalir fluida memiliki
beberapa sifat, antara lain memiliki tekanan hidrostatis, gaya angkat, kapilaritas serta viskositas.contoh
fluida yang tidak mengalir antara lain air dalam bak atau ember, gas dalam
ruang tertutup.

1.Tekanan Hidrostatis dan Hukum Pascal
Bagaimanakah keadaan air yang
diletakkan dalam suatu wadah, jika salah satu sisi sampingnya dilubangi ? Apakah
yang menyebabkan kejadian seperti ini ? Apa yang akan terjadi jika pemberian
lubang lebih dari satu dengan jarak atau kedalaman yang berbeda- beda dari
permukaan air ?.Selain itu, apakah jenis zat juga berpengaruh terhadap peristiwa ini tersebut ?. Untuk lebih jelasnya
lakukan kegiatan berikut ini.
Sehubungan dengan permukaan air
dalam pipa kapiler, kita tahu bahwa permukaan air dalam pipa kapiler itu tidak
rata. Hal ini menunjukkan bahwa dalam
zat cair itu memiliki tegangan permukaan. Dengan adanya tegangan permukaan ini
dapat mengakibatkan benda- benda tertentu seperti silet, jarum kecil atau
nyamuk dapat terapung di permukaan air. Padahal kita tahu bahwa massa jenis silet, jarum dan nyamuk jauh lebih besar dari
pada air.Dapat mengapungnya jarum dan pisau silet ini menunjukkan bahwa pada
permukaan zat cair itu terdapat gaya.
Akibat adanya gaya
ini, permukaan zat cair seolah- olah berupa selaput tipis. Selaput tipis inilah
yang akan dapat menahan benda- benda ringan sehingga terapung meskipun massa jenisnya jauh lebih besar dari massa jenis zat cair. Jadi tegangan
permukaan
adalah besar gaya
yang terdapat pada permukaan zat cair tiap satuan panjang
. Tegangan
permukaan pada zat cair ini dapat dirumuskan dengan Selain pada
zat cair, tegangan (stress) juga dimiliki oleh zat padat. Tegangan pada zat
padat jauh lebih besar dari pada tegangan pada zat cair. Sesuai dengan teori
partikel, menjelaskan bahwa antar partikel baik zat cair, padat dan gas
memiliki gaya
tarik- menarik. Pada zat padat jarak antar partikel sangat dekat dan gaya tarik- menariknya
sangat kuat, sehingga partikel- partikelnya hanya dapat bergerak di tempatnya.
Hal ini akan mengakibatkan bentuk dan volum zat padat selalu tetap.
Pada zat cair, jarak antar partikelnya
renggang dan gaya
tarik- menariknya tidak begitu kuat, sehingga partikel- partikelnya dapat
bergerak bebas.Tetapi gerakannya tidak dapat meninggalkan kelompoknya. Itulah
sebabnya bentuk zat cair selalu berubah- ubah sesuai dengan tempatnya.
Pada gas,jarak antar partikelnya berjauhan dan gaya
tarik- menarik antar partikelnya sangat lemah. Akibatnya, gerakan pertikel-partikelnya
sangat bebas dan tidak teratur. Itulah sebabnya bentuk dan volum gas selalu
berubah sesuai dengan bentuk wadahnya.
Gaya tarik- menarik antar
partikel ini dapat terjadi antara partikel sejenis maupun yang tidak sejenis. Gaya tarik-
menarik antar pertikel sejenis disebut kohesi
,
contohnya gaya tarik menarik antar molekul air dan gaya tarik- menarik antar molekul raksa. Gaya tarik- menarik antar partikel yang tidak sejenis
disebut dengan adhesi
,
contohnya gaya
tarik- menarik antar molekul minyak dan air, antar molekul kapur dan kayu serta
antar molekul timah dan besi (saat menyolder). Besarnya gaya kohesi dan adhesi pada setiap zat besarnya tidak sama.
Di depan telah
dijelaskan bahwa pada permukaan zat cair terdapat gaya. Gaya
yang dimaksud adalah kohesi dan adhesi.Gaya inilah yang akan mengakibatkan
timbulnya tegangan permukaan pada permukaan zat cair, karena dalam zat cair itu
terdapat molekul yang tidak terhitung jumlahnya.

3.Kapilaritas

Kalian tentu telah mengetahui bahwa
adanya gaya
kohesi dan adhesi mengakibatkan permukaan zat cair dalam suatu wadah tidak
datar, tetapi melengkung (meniscus). Hal ini terjadi pada pipa yang lubangnya
berdiameter sangat kecil (kurang dari 1 mm). Pipa seperti ini disebut dengan
pipa kapiler. Pada wadah yang berdiameter besar, gejala melengkungnya permukaan
zat cair ini tidak tampak. Gejala naik turunnya permukaan zat cair antara air
dan raksa tidak sama. Terlihat bahwa pada air dalam pipa ka[iler semakin naik
sedangkan raksa semakin turun (di bawah permukaan).Coba kalian sebutkan
penyebab dari peristiwa ini ?

ika kita memasukkan pipa kapiler
ke dalam air, maka permukaan air akan naik dan bentuk permukaannya cekung. Kenaikan
dan cekungnya permukaan air dalam pipa kapiler terjadi karena adhesi antara
partikel air dan kaca (pipa) lebih besar dari pada kohesi antar partikel air. Hal
sebaliknya terjadi pada raksa (Hg). Jika kita memasukkan pipa kapiler ke dalam
raksa, permukaan raksa akan turun dan bentuk permukaannya cembung, karena gaya adhesi antara raksa dan dinding kapiler lebih kecil dari
pada gaya
kohesi antar molekul raksa. Bentuk permukaan seperti ini disebut dengan
meniscus cembung.

Dengan demikian, di dalam pipa
kapiler terjadi gejala naik turunnya zat cair, yang disebutdengan kapilaritas. Contoh
peristiwa yang menunjukkan gejala kapilaritas adalah meresapnya minyak melalui
sumbu kompor, serta naiknya air dari akar ke daun melalui akar tanaman dan
masih banyak contoh yang lainnya. Besar kecilnya kelengkungan permukaan zat
cair dalam pipa kapiler dinyatakan dalam sudut kontak (). Sudut kontak ini adalah sudut yang dibentuk oleh permukaan zat cair dengan permukaan
dinding pada titik persentuhan
.


Jika permukaan zat cair meniscus
cekung, sudut kontaknya runcing (<>
dinding pipa. Sedangkan jika bentuk permukaan zat cair meniscus cembung, sudut
kontaknya tumpul . Keadaan ini menyebabkan zat cair tidak membasahi
dinding pipa.

Dari uraian di atas dapat
disimpulkan, bahwa ada hubungan antara gejala kapilaritas dengan jari- jari
pipa kapiler dan sudut kontak. Misalkan jari- jari pipa kapiler adalah r, kenaikan
atau penurunan permukaan zat cair dalam pipa kapiler y dan besar sudut kontak , permukaan zat cair yang menyentuh dinding berupa keliling
lingkaran sebesar 2r. jadi pada seluruh keliling permukaan zat cair bekerja gaya
tegangan permukaan sebesar


gaya ini mengangkat atau
menurunkan zat cair setinggi y. Dalam keadaan seimbang, berat zat cair yang
terangkat atau turun sama dengan gaya
tegangan permukaan. Jika massa
jenis zat cair , maka


sehingga Nilai y akan positif jika lancip dan akan
bernilai negative jika tumpul.

II. Fluida Dinamik
Sifat fluida mengalir sangat
kompleks sehingga rumit untuk dianalisis. Agar lebih sederhana fluida mengalir
kita anggap sebagai fluida ideal.Sifat fluida ideal antara lain tidak dapat
dimampatkan,(tak kompresibel), antar bagiannya dan dengan benda lain ( dinding
penampangnya) tidak mengalami gesekan, serta alirannya tunak dan lurus searah
dengan penampangnya. Aliran fluida dikatakan tunak jika kecepatan setiap titik
fluida konstan pada saat melalui tempat yang sama.

Jika kita memperhatikan aliran air
di sungai, sedikitnya kita dapat melihat dua macam aliran. Ada air yang mengalir secara konstan
mengikuti suatu garis, baik garis lurus maupun melengkung. Adapula air yang
mengalir berputar- putar tidak jelas yang arahnya tidak sama dengan arah aliran
keseluruhan fluida, bahkan kadang- kadang berlawanan arah. Aliran fluida yang mengikuti
suatu garis secara teratur disebut aliran garis arus ( streamline), sedang
aliran fluida yang berputar- putar tidak teratur disebut dengan aliran
turbulent (arus pusar).

FLUIDA STATIKA


Pada kegiatan pertama ini dibahas mengenai fluida statik. Pada kehidupan sehari-hari, sering digunakan air sebagai contoh. Marilah kita perhatikan air tenang yang berada di tempayan.

Gambar 1. Gaya-gaya yang bekerja pada dinding tempayan

tempat fluida adalah gaya normal

Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg. Gaya ini tersebar merata pada seluruh permukaan dasar bejana sebagaimana diperhatikan oleh bagian cairan dalam kolom kecil pada gambar 2. Selama cairan itu tidak mengalir (dalam keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah oleh akibat berat cairan dalam kolom tersebut:

W = m g = ρ V g (1)

di mana ρ adalah kerapatan zat cair dan V adalah volume kolom. Jika V = h ∆A, kita dapatkan:

W = ρ h ∆A g (2)

Jika berat itu ditopang oleh luasan ∆A, yang sebanding dengan luas ∆A, akibatnya gaya ini tersebar rata di permukaan dasar bejana.

Tekanan sebagai perbandingan gaya dengan luas, seperti diilustrasikan pada gambar 2.

gaya ρ h ∆A g

p = = = ρ g h (3)

luas ∆A

Di mana p adalah tekanan yang dialami dasar bejana. Dalam satuan tekanan diukur dalam N/m2, dan dinamai Pascal yang disingkat Pa.

Gambar 2. Cairan setinggi h menekan dasar bejana A

Sebagai contoh, misalnya akan kita cari tekanan dalam Pa, yang dialami dasar bejana cairan dengan ρ = 670 kg/m3 dan dalamnya 46 cm.

p = ρ g h = (670 kg/m3) (9,8 m/s2) (0,46 m)

= 3020 kg.m/s2 = 3020 n/m2 = 3020 pa

Tekanan adalah kuantitas skalar tanpa arah. Gaya yang menghasilkan tekanan yang bekerja pada permukaan adalah vektor yang arahnya selalu tegak lurus ke permukaan. Kita dapat menggunakan keadaan setimbang gaya-gaya yang bekerja pada bagian kecil cairan, seperti dilukiskan pada gambar 3.

Gambar 3. Keseimbangan gaya pada bagian kecil cairan.

Bagian kecil cairan yang tebalnya ∆A dan luas permukaan bagian atas (ada bagian bawah) A serta luas sisi lainnya A mengalami keseimbangan gaya. Dalam hal ini cairan tidak mengalami pergolakan yang mengakibatkan cairan mengalir. Tiap bagian dari cairan mestilah diam. Tekanan yang dilakukan bagian cairan lain pada bagian kecil cairan tersebut yang dilakukan oleh gaya-gaya F3 dan F4 saling meniadakan, demikian pula oleh gaya-gaya F5 dan F6. Gaya F2 mestilah cukup besar terhadap F1 agar dapat menopang bagian cairan tersebut.

Karena F3 = F4 dan F5 = F6, maka p3 (=F3/A2) = p4 (=F4/A2) dan p5 (=F5/A2) = p6 (F6/A2)

Sekarang, karena F2 > F1, maka

p2 A1 . p1 A1 = ρ g A1 ∆h

p2 . p1 = ρ g ∆h

atau

∆p = ρ g ∆h (4)

Jadi, apabila kerapatannya konstan, perubahan tekanan di antara dua titik di dalam cairan berbanding lurus dengan perbedaan kedalamannya. Pada kedalaman yang sama mempunyai tekanan yang sama. Selama variasi tekanan di dalam cairan statis hanya tergantung pada kedalamannya, maka penambahan tekanan dari luar yang dilakukan pada permukaan cairan, misalnya karena perubahan tekanan atmosfer atau tekanan piston, mestilah merupakan penambahan tekanan pada semua titik dalam cairan, seperti dikemukakan oleh Blaise Pascal (1623-1662), yang dikenal sebagai Hukum Pascal.

Tekanan yang dilakukan pada cairan dalam ruang tertutup, akan diteruskan kemana-mana sama besarnya termasuk dinding tempatnya.

Apabila kerapatan ρ (massa jenis) sangat kecil, misalnya fluida berbentuk gas, maka perbedaan tekanan pada dua titik di dalam fluida dapat diabaikan. Jadi di dalam suatu bejana yang berisi gas, tekanan gas di mana-mana adalah sama. Hal ini tentu saja bukan untuk ∆h yang sangat besar. Tekanan dari udara sangat bervariasi untuk ketinggian yang besar dalam atmosfer. Dalam kenyataan, kerapatan ρ berbeda pada ketinggian yang tidak sama dan ρ ini hendaklah kita ketahui sebagai fungsi dari h sebelum persamaan 3 di atas kita pergunakan.

Marilah kita perhatikan hal berikut ini. Andaikan ke dalam pipa berbentuk U dimasukkan dua jenis cairan yang tidak dapat bercampur secara sempurna, misalnya air dengan minyak tanah.

Gambar 4. Pipa berbentuk U berisi dua jenis cairan.

Setelah cairan yang kerapatannya ρ1 dimasukkan ke dalam pipa, cairan yang kedua dengan kerapatan ρ2 (di mana ρ1 > ρ2) dimasukkan ke salah satu pipa sehingga permukaan cairan yang pertama turun setinggi 1 di bawah cairan yang kedua itu, sedangkan permukaan lainnya naik setinggi 1 seperti dilukiskan pada gambar 4 di atas. Akan kita tentukan perbandingan kerapatan kedua jenis cairan tersebut. Pada gambar 4 titik C menyatakan keseimbangan tekanan. Tekanan di C yang dilakukan cairan di atasnya adalah

Untuk cairan pertama : p1 g 2 1

Untuk cairan kedua : p1 g 2 1

Sehingga :

ρ1 g 2 1 = ρ2 g (d + 2 1)

atau

ρ2 2 1

=

ρ1 d + 2 1

Perbandingan kerapatan suatu bahan terhadap kerapatan air dinamakan kerapatan relatif atau gravitas spesifik dari bahan tersebut.

Archimedes mendapatkan suatu prinsip sebagai berikut. Apabila suatu benda dicelupkan ke dalam cairan (seluruhnya atau sebagian), benda itu mengalami gaya ke atas sebesar berat cairan yang dipindahkannya.

Apabila sebuah benda dicelupkan ke dalam cairan, seperti ditunjukkan dalam gambar 5, total gaya ke atas atau gaya angkat, dilakukan pada benda. Akibat gaya ini terdapat perbedaan tekanan pada bagian bawah dan bagian atas benda. Selama tekanan ini tergantung pada kedalaman cairan, dengan mudah dapat kita hitung gaya ke atas untuk sederhana, antara lain untuk balok tegar di mana salah satu permukaannya horizontal.

Gambar 5. Gaya-gaya yang dialami benda di dalam cairan.

Benda yang bentuknya sembarang, agak sulit kita menentukan tekanan karena bervariasinya titik-titik permukaan benda. Untuk itu prinsip Archimedes sangat membantu. Andaikan benda dikeluarkan dari dalam cairan akan menggantikan tempat benda sebanyak tempat yang tadinya ditempati oleh benda. Jika volume tempat benda itu telah diisi oleh cairan, ini menunjukkan bahwa adanya keseimbangan gaya yang terjadi antar cairan penyelubung dengan bagian cairan yang menggantikan tempat benda tersebut. Jadi gaya netto yang arahnya ke atas adalah sama dengan m1 g, di mana m1 adalah massa cairan yang mengisi volume yang ditinggalkan oleh benda.

Sekarang kita tinggalkan pengandaian tadi dengan benda sesungguhnya yang massanya mo. Cairan mestilah melakukan kontak dengan setiap titik pada permukaan benda yang memberikan gaya-gaya sama di mana-mana. Gaya ini mestilah sama dengan gaya penopang cairan yang volumenya adalah sama. Gaya ini adalah gaya angkat (ke atas) yang besar.

Fb = mf g = ρ1 Vg (5)

Di mana m1 adalah massa cairan yang dipindahkan oleh benda yang tercelup ke dalam cairan adalah kerapatan cairan. Gaya angkat ini arahnya vertikal ke atas.

Persamaan 5 dinamakan Prinsip Archimedes yang dikemukakan oleh Archimedes pada tahun 250 SM. Jika gaya ke atas lebih kecil daripada berat benda yang dicelupkan, mala benda itu akan tenggelam. Jika berat benda lebih kecil daripada gaya ke atas, benda itu akan terapung. Seandainya ρo adalah kerapatan benda, dengan volume V, maka beratnya

W = mo g = ρo V g

Gaya ke atas dinyatakan oleh persamaan 5.

Fb = ρ1 V g (6)

Netto gaya ke atas ketika benda semuanya tercelup dalam cairan

Fnet = Fb . W =( ρf. ρo) V g (7)

Jadi benda dengan kerapatan lebih besar dari kerapatan cairan akan tenggelam, dan yang lebih kecil akan terapung.

Sekarang Anda lakukan latihan sebagai berikut.

1. Sebuah balon terbuat dari karet massanya 2 g diisi dengan gas helium yang massanya ¾ g. JIka volume balon itu 41, akan kita cari gaya ke atas netto yang bekerja pada balon.

2. Balok kayu yang kerapatannya 0,6 cm-3 berupa kubus dengan rusuk 10 cm terapung di dalam air seperti dilukiskan pada gambar 6. Akan kita tentukan bagian kayu yang tidak tercelup dalam air.



FLUIDA DINAMIKA

Aliran air yang ada di alam ini memiliki bentuk yang beragam, karena berbagai sebab dari keadaan alam baik bentuk permukaan tempat mengalirnya air juga akibat arah arus yang tidak mudah untuk digambarkan. Misalnya aliran sungai yangs edang banjir, air terjun dari suatu ketinggian tertentu, dan sebagainya. Contoh yang disebutkan di bagian depan memberikan gambaran mengenai bentuk yang sulit dilukiskan secara pasti. Namun demikian, bila kita kaji secara mendalam maka dalam setiap gerakan partikel tersebut akan selalu berlaku hukum ke-2 Newton. Oleh sebab itu, agar kita labih mudah untuk memahami perilaku air yang mengalir diperlukan pemahaman yang berkaitan dengan kecepatan (laju air) dan kerapatan air dari setiap ruang dan waktu. Bertolak dari dua besaran ini aliran air akan mudah untuk dipahami gejala fisisnya, terutama dibedakan macam-macam alirannya.

Bertolak dari kecepatan sebagai fungsi dari tempat dan waktu dapat dibedakan menjadi:

a. Aliran steady (mantap) dan non steady (tidak mantap)

b. Aliran rotational dan aliran irotational

Aliran air dikatakan steady (mantap) apabila kelajuan air pada setiap titik tertentu setiap saat adalah konstan. Hal ini berarti pada titik tersebut kelajuannya akan selalu konstan. Hal ini barati pada aliran steady (mantap) kelajuan pada satu titik tertentu adalah tetap setiap saat, meskipun kelajuan aliran secara keseluruhan itu berubah/berbeda.

Aliran steady ini akan banyak dijumpai pada aliran air yang memiliki kedalaman yang cukup, atau pada aliran yang yang memiliki kecepatan yang kecil. Sebagai contoh aliran steady ini adalah aliran laminier, yakni bahwa arus air memiliki arus yang sederhana (streamline/arus tenang), kelajuan gerak yang kecil dengan dimensi vektor kecepatannya berubah secara kontinyu dari nol pada dinding dan maksimum pada sumbu pipa (dimensi linearnya kecil) dan banyak terjadi pada air yang memiliki kekentalan rendah. Selanjutnya aliran air dikatakan tidak mantap (non steady) apabila kecepatan v pada setiap tempat tertentu dan setiap saat tidak konstan. Hal ini berarti bahwa pada aliran ini kecepatan v sebagai fungsi dari waktu.

Dalam aliran ini elemen penyusun air akan selalu berusaha menggabungkan diri satu sama lain dengan elemen air di sekelilingnya meskipun aliran secara keseluruhan berlangsung dengan lancar. Contoh aliran tidak steady ini adalah aliran turbulen, yakni bahwa partikel dalam fluida mengalami perubahan kecepatan dari titik ke titik dan dari waktu ke waktu berlangsung secara tidak teratur (acak). Oleh sebab itu aliran turbulen biasanya terjadi pada kecepatan air yang tinggi dengan kekentalan yang relatif tinggi serta memiliki dimensi linear yang tinggi, sehingga terdapat kecenderungan berolak selama pengalirannya.

Di samping aliran laminier dan aliran turbulen dikenal pula aliran yang memiliki profil kecepatan datar, tetapi aliran ini hanya dikenal pada fluida yang tidak memiliki kekentalan (koefisien kekentalannya nol) dan mengalir secara lambat. Sedangkan air adalah tergolong pada fluida yang memiliki kekentalan, sehingga air tidak dapat digolongkan sebagai aliran datar.

Selanjutnya aliran irrotational adalah aliran air yang tidak diikuti perputaran partikel penyusun air tersebut, sedangkan aliran rotational adalah aliran yang diikuti perputaran partikel penyusun air. Hal ini memberikan gambaran bahwa untuk aliran rotational dapat diberikan istilah rotasi. Salah satu cara untuk mengetahui adanya aliran rotasi ini antara lain bila di permukaan air terapung sebuah tongkat yang melintang selama aliran gerak tongkat tersebut akan mengalami gerakan yang berputar di samping berpindag secara translasi akibat aliran air tersebut. Contoh aliran rotasi adalah aliran yang berupa aliran pusaran, yakni suatu aliran yang vektor kecepatannya berubah dalam arah tegak/transversal.

Selanjutnya bila ditinjau dari perubahan massa jenis air yang mengalir maka akan dikenal aliran-aliran sebagai berikut:

  1. Aliran viscous dan aliran non viscous
  2. Aliran termampatkan dan aliran tak termampatkan

Aliran viscous adalah aliran dengan kekentalan, atau sering disebut aliran fluida pekat. Kepekatan fluida ini tergantung pada gesekan antara beberapa partikel penyusun fluida. Di samping itu juga gesekan antara fluida itu sendiri dengan tempat terjadinya aliran tersebuut. Untuk aliran air lebih didekatkan pada aliran dengan kekentalan yang rendah, sehingga aliran air dapat berapda pada aliran non viscous.

Selanjutnya aliran termampatkan adalag aliran yang terjadi pada fluida yang selama pengalirannya dapat dimampatkan atau berubah volumenya, sehingga akan mengubah pula massa jenis fluida tersbeut. Aliran termampatkan ini pada umumnya berlangsung pada gas, sedangkan pada air alirannya lebih didekatkan pada pengertian aliran tak termampatkan yakni bahwa selama pengaliran air tersebut massa jenis air dianggap tetap besarnya.

Dari uraian yang telah dikemukakan di bagian depan, maka agar aliran air dapat dipahami dengan mudah maka aliran yang dimaksud dalam pembahasan nanti labih ditekankan pada aliran-aliran yang meliputi:

1. Aliran air merupakan aliran yang mantap

2. Aliran air merupakan aliran yang tidak berputar (irrotational = tidak berotasi)

3. Aliran air merupakan aliran yang tidak termampatkan, yakni bahwa selama pengaliran berlangsung massa jenisnya tetap

4. Aliran air merupakan merupakan aliran tanpa kekentalan (kekentalannya rendah)

Melalui pengertiannya seperti yang telah dikemukakan di atas selanjutnya akan dikenal aliran stasioner, yakni bahwa aliran air tersebut akan membentuk gas alir yang tertentu dan partikel penyusun air akan melalui jalur tertentu yang pernah dilalui oleh pertikel penyusun air di depannya.

Gambar 1. Aliran stasioner

Pada aliran stasioner tersebut garis alirnya digambarkan dalam titik P, Q, dan R. Hal ini berarti air akan lewat pada titik-titik P, selanjutnya Q dan R. Pada aliran ini di setiap titik dalam pipa tersebut (titik P, atau titik Q atau titik R) tidak bekerja gaya, dan beda tekanan pada masing-masing titik dapat ditiadakan. Oleh sebab itu kecepatan aliran air di titik tertentu adalah sama. Namun demikian kecepatan aliran pada titik P, titik Q, dan titik R dapat saja berbeda besarnya. Gambar berikut adalah gambar yang memperlihatkan arus yang streamline dan turbulen.

Gambar 2. Arus turbulen dan streamline

Garis-garis yang digambarkan dalam tabung 3 ini disebut sebagai garis alir atau garis alur. Kecepatan titik A, B, dan C akan berbeda-beda.

Bilangan Reynold merupakan besaran fisis yang tidak berdimensi. Bilangan ini dipergunakan sebagai acuan dalam membedakan aliran laminier dan turbulen di satu pihak, dan di lain pihak dapat dimanfaatkan sebagai acuan untuk mengetahui jenis-jenis aliran yang berlangsung dalam air. Hal ini didasarkan pada suatu keadaan bahwa dalam satu tabung/pipa atau dalam satu tempat mengalirnya air, sering terjadi perubahan bentuk aliran yang satu menjadi aliran yang lain. Perubahan bentuk aliran ini pada umumnya tidaklah terjadi secara tiba-tiba tetapi memerlukan waktu antara, yakni suatu waktu yang relatif pendek dengan diketahuinya kecepatan kristis dari suatu aliran. Kecepatan kritis ini pada umumnya akan dipengaruhi oleh ukuran pipa, jenis zat cair yang lewat dalam pipa tersebut.

Berdasarkan eksperimen yang telah dilakukan terdapat empat besaran yang menentukan apakah aliran tersebut digolongkan aliran laminier ataukah aliran turbulen. Keempat besaran tersebut adalah besaran massa jenis air, kecepatan aliran, kekentalan, dan diameter pipa. Kombinasi dari keempatnya akan menentukan besarnya bilangan Reynold. Oleh sebab itu, bilangan Reynold dapat dituliskan dalam keempat besaran tersebut sebagai berikut.

Re = (ρ v D)/η

Keterangan:

Re : bilangan Reynold

ρ : massa jenis

η : viscositas/kekentalan

v : kecepatan aliran

D : diameter pipa

Hasil perhitungan berdasarkan eksperimen didapatkan ketentuan bahwa untuk bilangan Reynold berikut ini:

0 <>e ≤ 2000, aliran disebut laminier

2000 <>e ≤ 3000, aliran disebut transisi antara laminier dan aliran turbulen

Re > 3000, aliran turbulen

Dalam pembahasan aliran air, baik aliran air yang lewat sungai maupun melalui pipa oleh PAM, istilah debit air banyak dikenal.

Gambar 3. Aliran air lewat pipa.

Debit merupakan ukuran banyaknya volume air yang dapat lewat dalam suatu tempat atau yang dapat ditampung dalam suatu tempat tiap satu satuan waktu tertentu. Satuan debit pada umumnya mengacu pada satuan volume dan satuan waktu. Apabila Q menyatakan debit air dan v menyatakan volume air, sedangkan ∆t adalah selang waktu tertentu mengalirnya air tersebut, maka hubungan antara ketiganya dapat dinyatakan sebagai berikut:

Q = V/∆t

V : volume satuannya m3 (MKS) atau cm3 (cgs)

∆t : selang waktu tertentu satuannya second

Satuan Q adalah m3/sec (MKS) dan cm3 (cgs)

Gambar 4. Bak penampung air

Seperti telah diungkapkan di bagian depan bahwa aliran air pada umumnya berkaitan dengan kecepatan pengalirannya, dan massa jenis air itu sendiri. Aliran air dikatakan memiliki sifat ideal apabila air tersebut tidak dapat dimampatkan dan berpindah tanpa mengalami gesekan. Hal ini berarti bahwa pada gerakan air tersebut memiliki kecepatan yang tetap pada masing-masing titik dalam pipa dan geraknya beraturan akibat pengaruh gravitasi bumi di suatu tempat terhadap partikel penyusun air tersebut. Namun demikian sifat seperti yang telah diungkapkan di bagian depan tersebut dalam kehidupan sehari-hari sering sulit dijumpai dalam kenyataan, sehingga besarnya debit air yang mengalir pada sembarang aliran tersebut juga tidak mudah. Oleh sebab itu dalam pembahasan kita nanti ukuran debit didasarkan pada aliran ideal seperti yang telah diungkapkan di bagian depan.

Gambar 5. Gerak zat cair dalam tabung dari posisi (a) dan (b)

Lihat gambar di atas, suatu pipa terbuka yang luas penampang ujung kiri adalah A1 dan mengalir air dengan kecepatan V1, selanjutnya air mengalir melalui pipa kanan yang memiliki luas penampang A2 dengan kecepatan pengaliran adalah V2, maka berdasarkan sifat yang telah dikemukakan di depan akan berlaku hukum kekekalan massa, yakni bahwa selama pengaliran tidak ada fluida yang hilang, maka selama t detik akan berlaku persamaan:

A1 V1 g t = A2 V2 g t

A1 V1 = A2 V2 = konstan

Persamaan tersebut merupakan persamaan kontinuitas, dan sebagai konsekuensi aliran semacam ini adalah bahwa lecepatan pengaliran air akan terbesar pada suatu tempat yang memiliki luas penampang terkecil.

Di sini volume air yang mengalir V = A v t

Jadi selama t detik besarnya debit air yang dapat keluar adalah

Q = (A v t)/t

Q = A v

Seperti telah diungkapkan di bagian depan bahwa aliran air dalam suatu tabung akan bergantung pada tingginya permukaan air di dalam tabung tersebut dan luas penampang lubang yang terdapat dalam tabung. Hal ini berarti bahwa debit air yang mengalir dalam tabung akan bergantung pada ketinggian permukaan air dalam tabung dan luas penampangnya. Gambar di bawah ini memperlihatkan bahwa tabung dengan ketinggian permukaan air yang sama tingginya tetapi luas lubang pengaliran berbeda. Selanjutnya air dibiarkan mengalir dalam waktu yang sama.

Gambar 6. Peluapan air melalui lubang yang memiliki diameter berbeda.

Dari gambar di atas nampak jelas bahwa banyaknya air yang meluah melalui lubang tabung yang memiliki luas penampang yang lebih besar akan lebih banyak dibandingkan dengan tabung yang memiliki luas penampang yang lebih kecil. Hal ini disebabkan luas penampang lubang pengaliran air berbeda, yakni lubang yang satu lebih besar dari yang lainnya.

Selanjutnya perhatikan gambar berikut ini, di bawah ini terdapat dua tabung sama besar, diberikan dua lubang yang sama besarnya dan lubang tersebut berada pada ketinggian yang sama. Seterusnya pada tabung diisi dengan air yang berbeda tingginya dan dibiarkan air mengalir melalui lubang tersebut.

Gambar 7. Peluapan air melalui lubang sama tetapi ketinggian air berbeda.

Dari aliran air dalam selang waktu yang bersamaan akan dapat diketahui bahwa air dalam lubang tabung yang memiliki permukaan yang lebih tinggi akan memberikan gambaran debit air yang lebih besar daripada tabung yang memiliki ketinggian permukaan yang lebih rendah. Hal ini disebabkan pada permukaan air yang lebih tinggi gaya berat yang diberikan air semakin besar, sehingga memiliki kecenderungan tekanan yang lebih besar daripada tabung yang memiliki ketinggian permukaan air yang lebih rendah. Akibatnya aliran air akan lebih cepat dari yang lainnya. Dengan demikian akan memiliki debit yang lebih besar dari lainnya, semakin tinggi permukaan air dalam tabung akan semakin besar kecepatan air yang keluar dari tabung.