Selasa, 08 Desember 2009

Momentum,Implus, & Tumbukan

MOMENTUM



1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:

Impuls merupakan besaran vektor. Pengertian impuls biasanya dipakai dalam peristiwa besar dimana F >> dan t <<. Jika gaya F tidak tetap (F fungsi dari waktu) maka rumus I = F . t tidak berlaku.

Impuls dapat dihitung juga dengan cara menghitung luas kurva dari grafik gaya F vs waktu t.

1. MOMENTUM LINIER (p)

MOMENTUM LINIER adalah massa kali kecepatan linier benda. Jadi setiap benda yang memiliki kecepatan pasti memiliki momentum.

p = m v

Momentum merupakan besaran vektor, dengan arah p = arah v

2. MOMENTUM ANGULER (L)

MOMENTUM ANGULER adalah hasil kali (cross product) momentum linier dengan jari jari R. Jadi setiap benda yang bergerak melingkar pasti memiliki momentum anguler.

L = m v R = m w R2
L = p R

Momentum anguler merupakan besaran vektor dimana arah L tegak lurus arah R sedangkan besarnya tetap.

Jika pada benda bekerja gaya F tetap selama waktu t, maka IMPULS I dari gaya itu adalah:

TUMBUKAN ELASTIK

Tumbukan elastik sempurna atau tumbukan lenting sempurna adalah tumbukan yang jumlah energi kinetik benda - bendanya sebelum dan sesudah tumbukan adalah sama.


Tumbukan semacam ini mirip dengan tumbukan 2 benda A dan B, dimana salah satunya berpegas baja berbentuk U terbalik yang bertumbukan, pegas tertekan sejenak dan sebagian EK awalnya berubah sejenak menjadi Energi Potensial Elastik. Selanjutnya pegas meregang dan kedua benda terpisah, energi potensial berubah kembali menjadi energi kinetik dengan kecepatan VA2 dan VB2.


image009



Karena kekekalan energi kinetik dan kekekalan momentum maka:


Kekekalan energi kinetik : ½ m AvA12 + ½ mBvB12 = ½ m AvA22 + ½ mBvB22


Kekekalan momentum : mAvA1 + mBvB1 = mAvA2 + mBvB2


Jadi jika massa dan kecepatan awal diketahui, kita dapatkan dua persamaan yang berdiri sendiri dan kecepatan akhir tiap benda dapat dihitung sebagai:


vB2 - vA2 = - (vB1 - vA1)


kecepatan B relatif terhadap A setelah tumbukan = kecepatan B relatif terhadap A sebelum tumbukan


image010


image011


Bila massa benda tidak sama maka energi kinetik setelah tumbukan:


image012


image013



TUMBUKAN TIDAK ELASTIK


image014



Tumbukan ini kebalikan dari tumbukan elastik sempurna dimana setelah tumbukan benda melekat lalu terus bergerak sebagai satu kesatuan. Tumbukan seperti ini dinamakan tidak elastik sempurna. Dalam kondisi seperti ini maka:


VA2 - VB2 = V2


Apabila ini digabungkan dengan azas kekekalan momentum maka:


mAv A1 + mBvB1 = (mA + mB) v2


Dan kecepatan akhir sistem dapat ditentukan bila kecepatan awal dan masa diketahui.


Energi kinetik sebelum tumbukan :


Ek1 = ½ mAvA12 + ½ mBvB12


Energi kinetik akhir :


Ek2 = ½ (mA + mB) v22


Pada kejadian khusus dimana B mula - mula diam maka perbandingan energi akhir terhadap energi awal adalah:


image015


Ruas kanan haruslah lebih kecil dari 1, sehingga tumbukan tak elastik energi kinetik total berkurang. Hal tersebut dapat dinyatakan pula dengan besarnya koefisien restitusi dimana:


image016


v1, v2 adalah kecepatan relatif setelah tumbukan


u1, u2 adalah kecepatan relatif sebelum tumbukan.


Jika tumbukan elastik sempurna maka e = 1 dan pada tumbukan tidak elastik e < e =" 0.

KEPEGASAN


image017



Ilustrasi menunjukkan dua balok A dan B diantaranya terdapat pegas tertekan. Bila sistem dilepaskan dari keadaan diam maka pegas tersebut akan melakukan gaya yang sama besar dan berlawanan arah terhadap keduia balok, sampai pegas dalam panjangnya yang biasa dan jatuh ke lantai, sedangkan balok terus bergerak.


Dari ilustrasi tersebut mula - mula momentum nol, kalau gesekan diabaikanmaka resultan gaya luar terhadap sistem = nol. Karena itu momentum konstan an = nol. Lalu jika VA dan VB adalah kecepatan yang diperoleh A dan B maka:


mAv A + mBvB = 0, (vA/vB) = - (mB/mA)


Energi kinetik awal sistem juga nol, Ek akhir adalah:


Ek = ½ mAvA2 - ½ mBvB2


Sumber energi adalah energi potensial elastik awal sistem dimana perbandigan energi kinetik masing - masing benda adalah:


image018

TUMBUKAN LENTING SEMPURNA

Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.

Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.

Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.

Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…

Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.

Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.

Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2

v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan

v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum,

m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan

m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan

Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :

Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya

Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :

Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :

Kita tulis kembali persamaan ini menjadi :

Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.

Koofisien elastisitas Tumbukan Lenting Sempurna

Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…

Kita tulis lagi persamaan 3 :

Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :

e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan

TUMBUKAN LENTING SEBAGIAN

Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?

Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.

Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.

Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :

Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.

TUMBUKAN TIDAK LENTING SAMA SEKALI

Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…

Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?

Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :

m1v1 + m2v2 = m1v’1 + m2v’2

m1v1 + m2(0) = (m1 + m2) v’

m1v1 = (m1 + m2) v’—- persamaan 1

Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya) mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru, yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum Kekekalan Momentum tidak berlaku setelah balok bergerak.

Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?

Nah, masih ingatkah dirimu pada Hukum Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik. Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum, sedangkan EK = 0.

Kita turunkan persamaannya ya ;)

Catatan :

Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.

Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.

EM1 = EM2

EP1 + EK1 = EP2 + EK2

0 + EK1 = EP2 + 0

½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2

1 komentar: